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Geometry and Topology

A Riemann surface is a manifold with a complex struc-
ture. We will make this concrete.

Definition: Topological Manifold A topological
space (X,T ) is a topological manifold iff there is an
n ∈ N such that there is neighbourhood of every point
x ∈ X homeomorphic to Rn.

It is often also required that (X,T ) be second countable and
Hausdorff.

Definition: Smooth / Complex Manifold A topo-
logical manifold can be made into a smooth/complex
manifold by giving it a smooth/holomorphic atlas. An
atlas is a cover of X {Uα}α∈A and homeomorphisms
φα : Uα → R

n such that the transition functions

φα|Uα∩Uβ
◦ φ−1

β |φβ(Uα∩Uβ)

are smooth/holomorphic for every α, β ∈ A.

A Riemann surface is a complex 1 manifold, i.e. the ho-
moemorphisms are into R2 � C.

There is another definition of a Riemann surface as a
ringed space.

Definition: Riemann Surface A Riemann surface is
a topological manifold of dimension 2, (X,T ) with a
sheaf of C algebras O. In particular we require that
O(U) to be a subalgebra of C0(U) such that for every
x ∈ X ∃U ∈ T and a homeomorphism

ϕ : U → ∆

such that the pullback of φ, denote it φ∗ is an isomor-
phism of C algebras

O(U)
∼
−−→ O∆(∆)

φ∗( f ) = f ◦ φ

Definitions of Holomorphicity
Given an open subset D ⊆ C and a function f : D → C, we
say that f is holomorphic iff one of the following equivilent
conditions is met

• Identifying C with R2 (as a real vector space)
then f becomes a function of the form f (x, y) =
( f1(x, y), f2(x, y)). Then the holomorphic condition is
that both ∂

∂x f and ∂
∂y f exist and satisfy the Cauchy-

Riemann equations

∂

∂x
f = i

∂

∂y
f

• Fixing the basis {1, i} for C and identifying C with R2

we can then take f : D→ R2 if

d f : R2 → R2

exists it is just a matrix, then if df commutes with(
0 1
1 0

)
it is also holomorphic.

• the complex limit exists for all z ∈ D

lim
h→0

f (z + h) − f (z)
h

• ∃M ∈ C such that

f (z + h) − f (z) = Mh − O(h2)

• f is smooth and satisfies the Cauchy-Riemann equa-
tions

• Around every x ∈ D there exists a neighbourhood and
a Taylor series that converges to f on that neighbour-
hood

Recall also that for a bijective and holomorphic function
the inverse is automatically holomorphic. Such a bijective
holomorphic function is called biholomorphic.

Now we move on to thinking about maps between com-
plex manifolds.

Definition: A map f : S → S ′ between complex
manifolds is holomorphic iff for all the transition maps

φ−1
α ◦ f ◦ ψβ

are holomorphic.

We say that two atlases on a complex manifold are equivilent
when the identity between the topological space is holomor-
phic.

Properties of Holomorphicity
Given a holomorphic function between RS, picking charts
makes it a holomorphic function between C and C . The
taylor expansion of this function will depend on the chart
however two things are invariant under a change of coordi-
nates

• The existence of the expansion

• The index of the first non-zero coefficient in the series
i.e. the k value in

ψα ◦ f ◦ ϕ−1
β =

∑
i≥k

aizi

The value of this k is called the valuation of the holomor-
phic function, and we denote it ν f (x) : S → Z

Theorem. If f : X → Y is a non-constant holomorphic
function between RS then for all x ∈ X there exist open sets
x ∈ Ux ⊆ X and f (x) ∈ Vx ⊆ Y and charts ϕ : Ux → C,
ψ : Vx → C such that

ψ ◦ f ◦ ϕ−1 = zk

Holomorphic functions are locally powers. This has
many useful corrolories

• Non-constant holomorphic functions take open sets to
open sets.

• A holomorphic function with a local maximum at p
has a neighbourhood on which it is constant (of p)

• If f : X → Y is holomorphic, non-constant, both X
and Y are connected and X is compact then Y is com-
pact and f is surjective.
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• If f : X → C is holomorphic and X is compact then f
is constant.

• If f : X → Y is holomorphic, non-constant then the
set

S = {x ∈ X : ν f (x) > 1}

has no point of accumulation in X.

Finally we recall the idea of a function being anti-
holomorphic, that is its conjugate is holomorphic.

• The composition of two antiholomorphic functions is
holomorphic

• The composition of holomorphic and antiholomor-
phic is antiholomorphic

Riemann-Hurwitz
Given a holomorphic non-constant map between connected
RS f : X → Y we call its degree the sum

deg( f ) =
∑

x∈ f −1(s)

ν f (x)

where s ∈ Y is arbitrary (the value is independent).
A polygonal decomposition of a surface X is a finite

collection of points V and a finite collection of edges E,
γi : [0, 1] → X such that they are homeomorphism from
(0, 1) → γ(0, 1) and γ(0), γ(1) ∈ V . Then the connected
components of X \ ∪iγ[0, 1] are called faces, F. The Euler
characteristic of the surface is then defined as

χ(X) = |F| − |E| + |V | = 2 − 2g

where g is the genus of the surface.

Theorem (Riemann-Hurwitz). If X and Y are connected
compact RS and f : X → Y is a non-constant holomorphic
function then

χ(X) = deg( f )χ(Y) − b

where b is called the ramification index and is a finite con-
stant calculuated by

b =
∑
y∈Y

∑
x∈ f −1(y)

(ν f (x) − 1)

Poles
A continuous map between topological spaces p : Y → X is
said to be a covering of X if ∀x ∈ X there is an open neigh-
bourhood x ∈ U ⊆ X such that p−1(U) is the disjoint union
of open sets {Vi} and p|Vi is a homeomorphism for every i.

The degree of a covering is the cardinality of the preim-
age of a point (with the technicalities swept under the rug).

If p : Y → X be non-constant holomorphic map between
RS, a branched point of p is a point y ∈ Y such that there
is no neighbourhood V of y such that p|V is injective. p is
further said to be a branched covering if there exists finite
subsets S ⊆ Y,T ⊆ X such that

f : Y \ S → X \ T

is a covering.
Connect this to the valuation discussion

Meromorphic Functions
A meromorphic function on a RS X is a holomorphic map
X → P1, that is not constantly∞.

Lemma. A meromorphic function is locally of the form
f1/ f2 where f1, f2 are holomorphic functions (into C ) and
f2 is not constantly 0.

A pole is a point that maps to∞, its order is the valuation
at that point. We denote the set of meromorphic functions on
S by M(S ).

Lemma.

M(S ) � {( f ,V)| f : V → C

and V = S \ F where F is a discrete set}/ ∼

where ( f ,U) ∼ (g,V) iff f |U∩V = g|U∩V . (isomorphic as
fields)

Lemma. If f and g are holomorphic, non-zero, on a com-
pact and connected space, have the same set of zeroes and
poles then f = cg for some c ∈ C×

Theorem. Fix a connected Riemann surface X. Then, there
is a one-to-one correspondence between irreducible polyno-
mials P(T ) ∈M(X)[T ] and pairs (Y, f ), where π : Y → X is
a branched cover, and f ∈M(Y), such that the pullback

π∗ : M(X)[T ] −→M(Y)[T ],

has the property that (π∗P)( f ) = 0.

Examples of Riemann Surfaces

1.6.1 Sphere

We can get a topological space via the one point compactifi-
cation of C

C ∪ {∞} = P1

Then we have the following atlas

{(C, id), ((C ∪∞) \ {0}, z 7→
1
z

)}

Note that there are only two charts so to show that its an at-
las we only need to check the one overlap. The two opens
overlap on C∗ = C \ {0} and we have that

1
−
◦ id−1 =

1
−

as a function C∗ → C∗ and it is also holomorphic (because 0
is not in C∗).

1.6.2 Torus

Consider a lattice defined by the basis 1, τ where τ ∈ C is
not colinear with 1. Then there is an action Z + τZ y C via
addition. Thus we can take the quotient

C/(Z + τZ) � T 2

Which is the torus. We can see that this is the torus by con-
sidering the gluing diagram for the torus and comparing it to
a fundamental domain for the lattice.

This also induces a complex structure on T 2 by choosing
preimages of opens under the projection map.
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1.6.3 Graphs of Functions

We have "functions" on C such as ω(z) =
√

z, which are
really relations, given by sets such as

{(z,w) ∈ C2 : w2 = z}

We want to have a notion of when these relations are holo-
morphic. If S was a Riemann surface then we would know
what it means for a function S → C to be holomorphic. But
notice that by simply swapping the tuples around we get

S ′ = {(w, z) ∈ C2 : w2 = z}

which is the graph of f (w) = w2 and so we have a homeo-
morphism to C by projection off of the first variable, then we
could check that they were holomorphic etc. So because S
could be seen as the graph of a function, actually a functoin,
we can give it charts.

So in general the question then becomes " when is a set
the graph of a function". The implicit function theorem pro-
vides us with some sufficient conditions.

Theorem (Implicit / Inverse Function Theorem). If F :
C2 → C is a function and S = {(w, z) ∈ C2 : F(w, z) = 0},
and moreover ∂F

∂w (p) , 0 then there exists a neighbourhood
p ∈ U1 ×U2 ⊆ C

2 and a holomorphic function g : U1 → U2
such that

S ∩ U1 × U2 = Γg = {(z, g(z)) : z ∈ U1}

Symmetrically if ∂F
∂z (p) , 0 then there exists a neigh-

bourhood p ∈ U1 × U2 ⊆ C
2 and a holomorphic function

h : U2 → U1 such that

S ∩ U1 × U2 = Γh = {(h(z), z) : z ∈ U2}

If both derivatives are non-zero then the supplied h, g are
mutually inverse.

1.6.4 Classification Of Surfaces

All RS are orientable and all orientable and compact sur-
faces are either the sphere or the connected sum of tori.
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Differential Forms

In the past we have thought of differential forms as sec-
tions of certain bundles, however here we will consider them
as more "formal" objects. Given a smooth surface S with an
atlas (Uα, φα)α then

• A differential 0 form is a smooth function from S → C

• A differnetional 1 form is a collection of smooth func-
tions indexed by the same set as the atlas that we call
ω, where ωα = fαdxα + gαdyα for some smooth zero
forms fα, gα, that satisfies the following condition on
the overlap Uα ∩ Uβ

ωβ = fα(
∂xα
∂xβ

dxβ +
∂xα
∂yβ

dyβ) + gα(
∂yα
∂xβ

dxβ +
∂yα
∂yβ

dyβ)

• A smooth 2-form is again a collection of maps η
where locally ηα = fαdxα ∧ dyα and fα is a smooth
0-form.

We can define a sheaf of n forms by En, sending an open set
to the collection of n forms on it (when considered as a man-
ifold itself). We have a differential map that takes us from
n forms to n + 1 forms. Because a RS is a surface we can
only have up to two forms (this is from the proper definition
as sections) so we can consider the differential as an indexed
map

dn : En → En+1

such that
d0( f )α =

∂ f
∂xα

dxα +
∂ f
∂yα

dyα

d1(ω)α =
(
∂gα
∂xα
−
∂ fα
∂yα

)
dxα ∧ dyα

A one form ωα = fαdxα + gαdyα is called a (1,0) form if
∀α gα = 0 or a (0,1) form if fα = 0.

We can say more in the case of a RS because the tran-
sition functions must be holomorphic they also satisfy the
Cauchy Riemann equations. Thus if (Uα, φα = (z, z̄))α is our
atlas then we know that

∂zα
∂z̄β
=
∂z̄β
∂zα
= 0 ∀α, β

We may want to replace the adjective "differential" with
something along the lines of continuous", "measurable" etc.
This simply means that the coefficient functions fα has
the property. This is not the case for holomorphic how-
ever where a one form can be written in a chart as ωα =
fαdz + gαdz̄

• A smooth one form is said to be a (1, 0)-form if gα = 0
for all α

• A smooth one form is said to be a (0, 1)-form if fα = 0
for all α

• A holomorphic one form is a (1, 0) form such that fα
is holomorphic

• An anti-holomorphic one form is a (0, 1) form such
that gα is anti-holomorphic

Dolbeaut Operators
Intricately related to the differentials above are the operators

∂1 : A(1,0) → E2

∂̄1 : A(0,1) → E2

sending f dz 7→ ∂ f
∂z dz ∧ dz̄ and f dz̄ 7→ ∂ f

∂z̄ dz ∧ dz̄ and

∂0 : E0 → A(1,0)

∂̄0 : E0 → A(0,1)

sending f 7→ ∂ f
∂z dz and f 7→ ∂ f

∂z̄ dz̄.
The kernel of ∂̄ is exactly Ω0, that is holomorphic func-

tions.

Poincare Lemmas
Lemma. If ∆ is the unit disc in C and f ∈ C∞(∆) then there
is some g ∈ C∞(∆) such that ∂̄g = f

Lemma. If U ⊆ S an open, connected, simplly connected,
contractable space then

• Every closed 1-form is exact

• Every 2-form is exact

Lemma. closed i-form iff locally exact i-form.
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Homological Algebra

Categories

Abelian Categories
3.2.1 Snake Lemma

Exact Sequences and Exact Functors

Resolutions
3.4.1 Horeshoe Lemma

Derived Functors
3.5.1 Acyclic

If F : A → B is a functor between abelian categories then
we say that an object J ∈ A is F-acyclic if RiF(J) = 0 for
all i > 0.

Theorem. If F : A → B is left exact then the right de-
rived functor is equal to the homology of F applied to any
F-acyclic resolution.

So even though the right derived functor is defined in
terms of injective resolutions it is actually sufficient to find
an acyclic resolution.
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Sheaves

A presheaf of C objects on a topological space (or site)
is a functor T op → C , where T is the category given by
the topological space (objects opens, morphisms inclusions).
More generally a presheaf is any contravariant functor.

A sheaf of C objects over a topological space (X,T ) is
the data of

• A function O : T → ob(C )

• For each inclusion of open sets V ⊆ U a (contravari-
ant) function

resV
U : O(U)→ O(V)

satisfying the following conditions

• resU
U = idO(U)

• For any triple of open sets W ⊆ V ⊆ U

resW
V ◦ resV

U = resW
U

• For every open cover {Ui ⊆ U}i∈I of every open set U,
if s, t ∈ O(U) and resUi

U (s) = resUi
U (t) for all i ∈ I the

s = t

• Again for every open cover {Ui ⊆ U}i∈I of every open
set U given a family {si ∈ O(Ui)}i∈I such that ∀i, j ∈ I

resUi∩U j

U (si) = resUi∩U j

U (s j)

then there is a s ∈ O(U) such that resUi
U (s) = si for

every i ∈ I.

The first two conditions tell us that the restriction is func-
torial. The second two say that everything agrees locally.

Remark. This definition can be refrased homologically or
in the language of equalizers.

Example. The topological space

∆ = {z ∈ C : |z| < 1}

(with the subspace topology) that assigns to each open set,
U, the C-algebra of holomorphic functions U → C which
we denote O∆.

Morphisms of Sheaves
Sheaves of abelian groups (for instance) over a topological
space form a category. The morphism in this category are
(just) natural transformations.

A sheaf morphism is surjective if the induced maps on
the stalks is surjective. It is injective if the induced map on
the stalks is injective.

relate to the definitions of injective and surjective that I know...

Lemma. If f : F → G is a morphism of sheaves such that

F(U)→ G(U)

is surjective for all U then the morphism is a surjective mor-
phism of sheaves.

The converse is not true, for instance the Dolbeaut map

A(0,0) ∂̄
−→ A(0,1)

Not clear why this is not surjective on opens

Types of Sheaves
First if we have a (pre)sheaf F on T , then a sub-(pre)sheaf
is another sheaf G on T and a natural transformation η : G →
F such that for every open set in T ηU : G(U) → F(U) is
injective.

A morphism of sheaves is called surjective if the in-
duced maps on the stalks are surjective at every point. In
this case we call the codomain a quotient sheaf of the do-
main.

Definition: A sheaf F on X is called soft if for every
open U ⊆ X and every closed K ⊆ U the natural map
is surjective

F(U)→ colim
K⊆V⊆U

F(V)

• The sheaf of locally constant functions is not soft

• The sheaf of holomorphic functions is not soft

• The sheaf of smooth functinos is soft

• The sheaf of smooth one forms is soft

Lemma. If F is a soft sheaf and 0 → F → F ′ → F ′′ → 0
is exact then for all U open 0 → F(U) → F ′(U) →
F ′′(U)→ 0 is exact.

Lemma. If 0 → F → F ′ → F ′′ → 0 is exact and both F
and F ′ are soft then so is F ′′.

Definition: A sheaf F on X is said to be invertible
if there exists an open cover {Uα} of X and an isomor-
phism of sheaves

F |Uα

φα
−−→ OUα

which moreover satisfies the condition that when Uα∩

Uβ , ∅ there is a "transition function" ∃aα,β ∈ OUα∩Uβ

that is invertible and the diagram commutes

F |Uα

F |Uα∩Uβ

F |Uβ

φα

φβ

aα,β

• O is invertible (structure sheaf)

• Ω1 is invertible

• O{−p}
..= Ip is invertible (see the Riemann-Roch

section)

Given an invertible sheaf F with isomorphisms φα and
transition functions aα,β then there is another sheaf F−1 with
isomorphisms given by φ̄α and transition functions a−1

α,β
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Stalks
Given a sheaf F on X then the stalk of F at a point is

Fx = colim
x∈U open

F(U) �
{
( f ,U) : x ∈ U open , f ∈ F(U)

}
/ ∼

where ( f , u) ∼ (g, v) when f |U∩V = g|U∩V . A single equiv-
ilence class [( f ,U)] is called the germ of f at x, and so the
stalk is the set of all germs.

Stalks are colimits so for every x and U there is a natural
map ρx : F(U) → Fx; in fact this map and the stalk encode
a lot of information

Lemma. f = 0 ∈ F(U) if and only if ∀x ∈ U ρx( f ) = 0

Sometimes a sheaf will have the stronger property that if
∀U open and connected and ∀ f ∈ F(U) f = 0 iff ∃x ∈ U
such that ρx( f ) = 0. Such a sheaf is said to satisfy the identiy
theorem.

Examples of Sheaves
The following are all sheaves

• The assignment of continous functinos to open sets on
any topological space (C0)

• The assignment of smooth n-forms on a smooth man-
ifold (En)

• The assignment of (anti)holomorphic n-forms to a RS
(A(p,q))

• The assigment of holomorphic functions on a RS (O).
This is a subsheaf of C0 called the structure sheaf.
This sheaf satisfies the identity theorem.

understand exactly why holomorphic functions satisfy the identity theorem but
smooth functions do not

We can get more examples of sheaves by restricting al-
ready existing ones. If F is a sheaf on X and U ⊆ X is open
then we can define a new sheaf on U by

FU(V) = F(U ∩ V)

8



Homological Algebra of Sheaves

Exact Sequences
Homological algebra concepts can be applied to
(pre)sheaves of Abelian groups. The category of presheaves
abelian.

The cokernel of a sheaf (in the category of presheaves)
is not necissarily a sheaf so the category of sheaves is not
abelian.

Exercise. I f the sheaf of constant Z valued func-
tions on a space is denoted Z then there is an inclu-
sion into the structure sheaf

Z ↪→ O

Show that the cokernel of this map is not a sheaf

Because the category of sheaves is not abelian we need
another notion of exact sequences. We say that a chain of
sheaves over X

F → G → H

is exact at the place G iff for every x ∈ X we have

Fx → Gx → Hx

is exact as a chain of abelian groups at Gx.

Remark: There is a zero object for sheaves so we can talk
about chains a priori (the maps square to 0), however not
exactness.

Exact Functors
The inclusion Sh(X) ↪→ Presh(X) is a left exact functor.

If X is a topological space we have the functor of global
sections on the category of sheaves

Γ : ShAb(X)→ AbGrp

which evaluates a sheaf on X. This is left exact and if we re-
place S h(X) with Presheaves on X we get an exact functor.
The right derived functor of this is the sheaf cohomology.

The hom functor is left exact in both positions i.e.
Hom(a,−) and Hom(−, a) is left exact.

In fact there is a natural isomorphism Γ(X,−) �
HomSh(X)(Z,−) where Z is denoting the sheaf of constant
integer valued functions on X.

Resolution Examples
Note that the category of (pre)sheaves has enough injectives.

Lemma. Soft sheaves are Γ-acyclic.

Lemma. Any injective sheaf is soft.

Structure Sheaf

0→ O ↪→ A(0,0) ∂̄
−→ A(0,1) → 0

is a soft resolution.

Constant Sheaf

0→ C→ E0 d0

−→ E1 d1

−→ E2 → 0

is a soft resolution.

Holomorphic One Forms

0→ Ω1 → A(1,0) ∂̄
−→ A(1,1) → 0

is a soft resolution.
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(Co)Homology Theories

General (Co)homology
A chain complex is a sequence of objects and morphisms in
an (abelian) category such that the morphisms square to the
zero morphism. It always makes sense to take the homol-
ogy of a chain. Given a cochain complex, we can take its
cohomology (the difference is only a matter of indexing, it
is merely formal).

The homology of a chain di : Ci → Ci−1 is given by

Hi = ker(di)/Im(di+1)

The cohomology of a cochain di : Ci → Ci+1 is

Hi = ker(di)/Im(di−1)

To associate homology to a topological space then the
real task is associating a (co)chain complex and then simply
take its (co)homology.

This can be reformulated functorially, (co)homology is
a functor H• : Ch(A) → Ch(A) such that H•(φ)[c] = [φ(c)].
Recall that a chain map φ• : C•1 → C•2 is a sequence of
morphisms (φn : Cn

1 → Cn
2) such that we get a commutative

square at each place.

· · · Cn
1 Cn+1

1 · · ·

	

· · · Cn
2 Cn+1

2 · · ·

dn
1

dn
2

φn φn+1

And homology maps such a chain map to

Cellular
To a Riemann surface with a given cellular decomposition
we can associate the R-cellular chain complex

0→ C2
δ2
−→ C1

δ1
−→ C0 → 0

Where Ci is the free R module on the i-cells of the decom-
position.

Explicitly C2 = FreeR(Faces), C1 = FreeR(Edges) and
C0 = FreeR(Vertices). The maps are

δ2( f ace) = boundary of face

δ1(Edge) = γ(1) − γ(0)

If we know the chain complex above we can get the (R
valued) cochain complex by homming into R i.e.

0→ Hom(C0,R)
δ∗2
−→ Hom(C1,R)

δ∗1
−→ Hom(C2,R)→ 0

notice that becuase Hom is contravariant the indicies now
count down. Taking the cohomology of this is what we de-
fine to be the cellular cohomology.

De Rham
En is the sheaf of smooth n-forms on some RS. Recalling
that the differential map d takes us from E i to E i+1 we can
form a cochain

0→ E0(S )
d0

−→ E1(S )
d1

−→ E2(S )→ 0

From which we can take the cohomology. This is a chain of
C algebras and so this is where the cohomology will land.
We denote this Hn

dR(X).

Remark: We consider these things to be C algebras be-
cause our sheaf E assigns the smooth n forms where the co-
efficients of our n forms are functions U → C. In differen-
tial topology for instance we would think of only functions
U → R and hence think of the De Rham cohomology as
landing in R algebras.

6.3.1 Computing De Rham

Lemma.

H0
dR(X) � C# connected components of X

Dolbeaut
1 forms on a RS have a basis dz, dz̄ so we can decompose
E = A(1,0) ⊕ A(0,1) where A(1,0), A(0,1) are now two new sheafs
that assign one forms in the span of dz and dz̄ respectively.
This gives two cochains

0→ A(1,0)(S )
∂̄
−→ E2(S )→ 0

0→ E0(S )
∂̄
−→ A(0,1)(S )→ 0

The cohomology of these cochains is the (1, 0) and (0, 1)
Dolbeaut cohomology respectively.

Remark: We are really using the (almost) complex struc-
ture to perform this decomposition because in general we
are not able to assign charts in a consistent way such that z
and z̄ form a basis. This assignment is the almost complex
structure.

6.4.1 Relation to the De Rham Complex

We can rewrite the De Rham complex as

0→ E0(S )
∂+∂̄
−−−→ A(1,0) ⊕ A(0,1) ∂̄−∂

−−−→ E2(S )→ 0

(which is the same as saying the center column
splits below, using the inclusion map) Moreover
we have the following diagram with exact columns

0 0

0 A(1,0)(S ) A(1,1)(S ) 0

0 E0(S ) E1(S ) E2(S )

A(0,0)(S ) A(0,1)(S ) 0

0 0

which by applying the snake lemma gives a long exact
sequence in cohomology

0 H0
dR(S ) H(0,0)(S ) H(1,0)(S ) H1

dR(S ) H(0,1)(S ) H(1,1)(S ) H2
dR(S ) 0

Moreover

10



Theorem. When S is compact RS we have

Hi
dR(S ) �

⊕
p+q=i

Hp,q(S )

6.4.2 Computing Dolbeaut cohomology

Lemma.
H(0,0)(X) = O(X)

the space of holomorohic functions which if X is compact is
C

Lemma.
H(1,0)(X) = Ω1(X)

which if X is compact and connected is Cg where g is the
genus of X.

Lemma.
H(0,1)(∆) = 0

where ∆ is the unit disk in C .

Cech
In a sense this is the most general cohomology, as the others
are special cases of it. Consider a sheaf F on a topologi-
cal space X with a totally ordered cover {Uα}α then the Cech
complex is given by

0→
∏
α

F(Uα)→
∏
α<β

F(Uα ∩ Uβ)→ · · · →
∏

α1<···<αn

F
⋂

i

Uαi

→ · · ·

The maps are discusting, alternating sums, fill in

The cohomology of this complex is denoted

Ȟi({Uα},F)

and is called the Cech cohomology of F with respect to the
cover Uα

6.5.1 Computing Cech

Lemma.
Ȟ0({Uα},F) = F(X)

6.5.2 Relation to Sheaf Cohomology

If the cover is Leray then the sheaf and Cech agree

Definition: A cover {Uα} of X is called a F-Leray
cover if for all i > 0, k ≥ 1 (all possible intersections
of all possible size)

Hi(Uα1 ∩ · · · ∩ Uαk ,F) = 0

We say that a cover is n − th-Leray if only the cohomology
for 0 < i ≤ n vanishes. In this the i − th sheaf cohomology
still agrees with the i − th Cech cohomology for 0 < i ≤ n.

Lemma. {Uα} is C-Leray iff every intersction Uα ∩ Uβ is
contractable and connected.

Theorem (Cartan Theorem B). If U is a non-compact RS
and F is an invertible sheaf then

Hi(U,F) = 0, ∀i > 0

Sheaf
If X is a topological space ten recall we have the functor

Γ : S h(X)→ AbGrp

F 7→ F(X)

called the global sections functor. Because the category
of sheaves always has enough injectives we can derive this
functor, to get

Hi(X,−) ..= RiΓS h(X)→ AbGrp

So if F is a sheaf and we have an injective resolution

0→ F → I1 → I2 → · · ·

then we apply the global sections functor to get the chain
without F

0→ I1(X)→ I2(X)→ · · ·

and then take (co)homology giving the sheaf cohomology of
F .

6.6.1 Computing Sheaf Cohomology

Review the soft resolutions we gave above. These then tell
us that

Hi(S ,O) = H(0,i)(S )

Hi(S ,Ω1) = H(1,i)(S )

Hi(S ,C) = Hi
dR(S )

11



Integrating Forms

One Forms
Let ωα = fαdxα + gαdyα ∈ E1(S ) and γ be a piecewise
smooth curve (for simplicity assume it lies inside a single
chart, if not break it into pieces and sum the integrals) then
we define∫

γ

ω =

∫ 1

0

[
fα(γ(t))

∂xα
∂t

dt + gα(γ(t))
∂yα
∂t

dt
]

Then one can check that

• This is independent of chart

• This is independent of parametrization of γ

• If γ is closed then this integral depends only on ω up
to an exact one form (immediate from Stokes)

• This integral depends only on γ up to a boundary (of
a cellular decomposition say)

Because De Rham cohomology is the closed forms mod ex-
act forms and cellular homology is the cycles mod bound-
aries the last two dot points show that in fact integration is
defined "only up to homology" i.e. we have a well defined
map ∫

: H1(S ,Z) × H1
dR(S )→ C

Example. Torus

Two Forms
Give the smooth two form ηα = fαdxα ∧ dyα we define the
integral over a compact connected set Ω with piece wise
smooth boundary as∫

Ω

η =

∫
Ω

ηαdxα ∧ dyα =
∫ ∫

ηαdxαdyα

Theorem (Stokes).

∫
∂Ω

ω =

∫
Ω

dω

This is essential in the proof that integration is defined
up to homology above.

Closed Curves

A useful fact is that a closed curve on a surface is homotopic
to a chain of edges, hence for integrals of closed forms the
integrals of closed curves are Z linear combinations of the
integral of the closed forms around one cells of the spcace
(as these generate the edges).

12



Hodge Theory

Recall that we had a well difined map∫
: H1(S ,Z) × H1

dR(S )→ C

Now

Lemma. ω a closed 1-form is exact iff for any closed curve
C ∫

C
ω = 0

this tells us that we may complexify

13



Riemann-Roch

Our work in Hodge theory culminated in the Riemann-
Hodge bilinear relations, from these we can prove

Lemma. For a compact connected Riemann Surface S we
have

dimH0(S ,O) − dimH1(S ,O) = 1 − g

This is a special case of Riemann-Roch, which we now
endeavor to prove.

Divisors
If S is a connected and compact RS then a divisor D is a
formal Z linear combination of points of S

D =
∑
s∈S

Dp · p, Dp ∈ Z

such that Dp = 0 for all but finitely many p. Formally we
may think of this as a function from S → Z with a finite
support.

We associate to a divisor a degree

degD =
∑
p∈S

Dp

Enter Sheaves
Given a divisor D we construct a sheaf associated

OD(U) =
{
f ∈M(U) : ordp( f ) ≥ −Dp, ∀p ∈ S

}

where

ordp( f ) =


0, p is neither a pole or zero
k, p is a zero order k
−k, p is a pole order k

Example. There is another important sheaf

Ip(U) =

O(U), p < U
{ f ∈ O(U) : f (p) = 0}, else

• If D = 0 then OD = O

• If D = −p then OD = Ip

• If D = p then OD = I−1
p , where this is the inverse

taken in the sense of Ip being an invertible sheaf.

Definition: The skyscraper sheaf at a point p is

Cp(U) =

C, p ∈ U
0, else

This sheaf is completely characterised by its stalks

(Cp)x =

C, x = p
0, else

We can now form a short exact sequence of sheaves

0→ Ip → O → Cp → 0

The map O → Cp is the evaluation

f 7→

 f (p), p ∈ U
0, else

This can be shown to be exact using a long exact se-
quence in homology.

Riemann-Roch

The proof of this short exact sequence in essence shows that

Theorem. If S is a compact connected RS and D is a divisor
then

dimH0(S ,OD) − dimH1(S ,OD) = 1 − g + degD
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Applications of Riemann-Roch

Abelian Differentials
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Topic List

Week 1
x Examples of z = w2 and w =

√
(z2 − 1)(z2 − 2)

x Riemann surface as manifold with complex structure

x Definition and equivilent conditions for a function C→ C to be holomorphic

x Cauchy Riemann relation to commutation with linear operator

x Definition of biholomorphic

x Lemma that invertable holomorphic functions are all biholomorphic

x Definition of holomorphic between two Riemann Surfaces

x Definition of Riemann surface as a ringed space

• Problems with residue

x Riemann Sphere

x Torus (complex lattice)

• sqrt revisited.

• Inverse function theorem

x Classification of surfaces

Week 2
• Valuation of a holomorphic functions

• holomorphic maps are locally powers

• Facts about holomorphic Functions

• degree of a map

• Polygonal decomposition of surface

• Riemann Hurewitz formula

• Covering space

• Branch points

• Branched coverings

• Meromorphic Functions
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• Poles

• Isomorphism of fields between meromorphic functions

• zeroes

• Functions are determined by their zeroes and Poles

• Sqrt function again and that surfaces meromorphic functions

• Theorem 8.9 in For

• Return to residue

• smooth 0,1,2 forms

Week 3
• Classification of singularities

• holomorphic and antiholomorphic

• holomorphic functions are smooth functinos with zero antiholomorphic derivative

• differential map

• De Rham complex

• De Rham cohomology

• Global sections functor

• Sheaves generally

• Morphisms of sheaves

• sub sheaves

• Structure sheaf as subsheaf of continuous functions

• Stalk at a point

• Constant sheaf

• Identity theorem

• Stalks satisfy the identity theorem

• Surjective morphism of sheaves

• Complex of sheaves

17



Week 4
• 0th De Rham cohomology of a surface

• Dolbeaut cohomology

• Relation between De Rham and Dolbeaut

• Cellular chain

• Cellular homology

• Integrating one forms

• Exact and closed one forms

• Integration as a map on homology

• some stuff about sign

• missing lecture

Week 5
• Abelian categories

• Exact functor definition and examples

• Injective objects

• Resolutions

• Enough

• Horeshoe lemma

• Snake lemma

• Right derived functors

• Sheaf cohomology

• missing lecture

• soft sheaves

• Cech cohomology

• Cech resolution

• Leray cover

• Poincare lemma

• Cartans Thoerem B

18



Week 6
• Invertible sheaf

• Poincare lemma again

• Complexification

• Extension of integral to a map on complexified cohomology

• Closed forms and integrals around loops

• Star operator

• Harmonic function

• Holomorphic equivilent condition

• L2 space

• closed and coclosed

• Harmonic closed and coclosed decomp of L2 (Hodge decomp)

• Harmonic H (Weyls lemma)

• Every cohomology class (De Rham ) has a unique harmonic representative

• Riemann Bilinear Relations

Week 7
•
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